%!
is transparently tied to the Errno module
EXPR foreach EXPR
is supported
$^E
is meaningful on Win32
foreach (1..1000000)
optimized
Foo::
can be used as implicitly quoted package name
exists $Foo::{Bar::}
tests existence of a package
printf
format conversions are handled internally
INIT
keyword
lock
keyword
qr//
operator
our
is now a reserved word
perl5005delta - what's new for perl5.005
This document describes differences between the 5.004 release and this one.
Perl is now developed on two tracks: a maintenance track that makes
small, safe updates to released production versions with emphasis on
compatibility; and a development track that pursues more aggressive
evolution. Maintenance releases (which should be considered production
quality) have subversion numbers that run from 1
to 49
, and
development releases (which should be considered "alpha" quality) run
from 50
to 99
.
Perl 5.005 is the combined product of the new dual-track development scheme.
Starting with Perl 5.004_50 there were many deep and far-reaching changes to the language internals. If you have dynamically loaded extensions that you built under perl 5.003 or 5.004, you can continue to use them with 5.004, but you will need to rebuild and reinstall those extensions to use them 5.005. See INSTALL for detailed instructions on how to upgrade.
The new Configure defaults are designed to allow a smooth upgrade from 5.004 to 5.005, but you should read INSTALL for a detailed discussion of the changes in order to adapt them to your system.
When none of the experimental features are enabled, there should be very few user-visible Perl source compatibility issues.
If threads are enabled, then some caveats apply. @_
and $_
become
lexical variables. The effect of this should be largely transparent to
the user, but there are some boundary conditions under which user will
need to be aware of the issues. For example, local(@_)
results in
a "Can't localize lexical variable @_ ..." message. This may be enabled
in a future version.
Some new keywords have been introduced. These are generally expected to
have very little impact on compatibility. See New INIT
keyword,
New lock
keyword, and New qr//
operator.
Certain barewords are now reserved. Use of these will provoke a warning
if you have asked for them with the -w
switch.
See our
is now a reserved word.
There have been a large number of changes in the internals to support the new features in this release.
Core sources now require ANSI C compiler
An ANSI C compiler is now required to build perl. See INSTALL.
All Perl global variables must now be referenced with an explicit prefix
All Perl global variables that are visible for use by extensions now
have a PL_
prefix. New extensions should not
refer to perl globals
by their unqualified names. To preserve sanity, we provide limited
backward compatibility for globals that are being widely used like
sv_undef
and na
(which should now be written as PL_sv_undef
,
PL_na
etc.)
If you find that your XS extension does not compile anymore because a
perl global is not visible, try adding a PL_
prefix to the global
and rebuild.
It is strongly recommended that all functions in the Perl API that don't
begin with perl
be referenced with a Perl_
prefix. The bare function
names without the Perl_
prefix are supported with macros, but this
support may cease in a future release.
Enabling threads has source compatibility issues
Perl built with threading enabled requires extensions to use the new
dTHR
macro to initialize the handle to access per-thread data.
If you see a compiler error that talks about the variable thr
not
being declared (when building a module that has XS code), you need
to add dTHR;
at the beginning of the block that elicited the error.
The API function perl_get_sv("@",FALSE)
should be used instead of
directly accessing perl globals as GvSV(errgv)
. The API call is
backward compatible with existing perls and provides source compatibility
with threading is enabled.
See "C Source Compatibility" for more information.
This version is NOT binary compatible with older versions. All extensions will need to be recompiled. Further binaries built with threads enabled are incompatible with binaries built without. This should largely be transparent to the user, as all binary incompatible configurations have their own unique architecture name, and extension binaries get installed at unique locations. This allows coexistence of several configurations in the same directory hierarchy. See INSTALL.
A few taint leaks and taint omissions have been corrected. This may lead to "failure" of scripts that used to work with older versions. Compiling with -DINCOMPLETE_TAINTS provides a perl with minimal amounts of changes to the tainting behavior. But note that the resulting perl will have known insecurities.
Oneliners with the -e
switch do not create temporary files anymore.
Many new warnings that were introduced in 5.004 have been made optional. Some of these warnings are still present, but perl's new features make them less often a problem. See New Diagnostics.
Perl has a new Social Contract for contributors. See Porting/Contract.
The license included in much of the Perl documentation has changed. Most of the Perl documentation was previously under the implicit GNU General Public License or the Artistic License (at the user's choice). Now much of the documentation unambiguously states the terms under which it may be distributed. Those terms are in general much less restrictive than the GNU GPL. See perl and the individual perl manpages listed therein.
WARNING: Threading is considered an experimental feature. Details of the implementation may change without notice. There are known limitations and some bugs. These are expected to be fixed in future versions.
See README.threads.
WARNING: The Compiler and related tools are considered experimental. Features may change without notice, and there are known limitations and bugs. Since the compiler is fully external to perl, the default configuration will build and install it.
The Compiler produces three different types of transformations of a perl program. The C backend generates C code that captures perl's state just before execution begins. It eliminates the compile-time overheads of the regular perl interpreter, but the run-time performance remains comparatively the same. The CC backend generates optimized C code equivalent to the code path at run-time. The CC backend has greater potential for big optimizations, but only a few optimizations are implemented currently. The Bytecode backend generates a platform independent bytecode representation of the interpreter's state just before execution. Thus, the Bytecode back end also eliminates much of the compilation overhead of the interpreter.
The compiler comes with several valuable utilities.
B::Lint
is an experimental module to detect and warn about suspicious
code, especially the cases that the -w
switch does not detect.
B::Deparse
can be used to demystify perl code, and understand
how perl optimizes certain constructs.
B::Xref
generates cross reference reports of all definition and use
of variables, subroutines and formats in a program.
B::Showlex
show the lexical variables used by a subroutine or file
at a glance.
perlcc
is a simple frontend for compiling perl.
See ext/B/README
, B, and the respective compiler modules.
Perl's regular expression engine has been seriously overhauled, and many new constructs are supported. Several bugs have been fixed.
Here is an itemized summary:
Changes in the RE engine:
Unneeded nodes removed; Substrings merged together; New types of nodes to process (SUBEXPR)* and similar expressions quickly, used if the SUBEXPR has no side effects and matches strings of the same length; Better optimizations by lookup for constant substrings; Better search for constants substrings anchored by $ ;
Changes in Perl code using RE engine:
More optimizations to s/longer/short/; study() was not working; /blah/ may be optimized to an analogue of index() if $& $` $' not seen; Unneeded copying of matched-against string removed; Only matched part of the string is copying if $` $' were not seen;
Note that only the major bug fixes are listed here. See Changes for others.
Backtracking might not restore start of $3. No feedback if max count for * or + on "complex" subexpression was reached, similarly (but at compile time) for {3,34567} Primitive restrictions on max count introduced to decrease a possibility of a segfault; (ZERO-LENGTH)* could segfault; (ZERO-LENGTH)* was prohibited; Long REs were not allowed; /RE/g could skip matches at the same position after a zero-length match;
The following new syntax elements are supported:
(?<=RE) (?<!RE) (?{ CODE }) (?i-x) (?i:RE) (?(COND)YES_RE|NO_RE) (?>RE) \z
qr//
operator.
Better debugging output (possibly with colors), even from non-debugging Perl; RE engine code now looks like C, not like assembler; Behaviour of RE modifiable by `use re' directive; Improved documentation; Test suite significantly extended; Syntax [:^upper:] etc., reserved inside character classes;
(?i) localized inside enclosing group; $( is not interpolated into RE any more; /RE/g may match at the same position (with non-zero length) after a zero-length match (bug fix).
See banner at the beginning of malloc.c
for details.
Perl now contains its own highly optimized qsort() routine. The new qsort()
is resistant to inconsistent comparison functions, so Perl's sort()
will
not provoke coredumps any more when given poorly written sort subroutines.
(Some C library qsort()
s that were being used before used to have this
problem.) In our testing, the new qsort()
required the minimal number
of pair-wise compares on average, among all known qsort()
implementations.
See perlfunc/sort
.
Perl's signal handling is susceptible to random crashes, because signals arrive asynchronously, and the Perl runtime is not reentrant at arbitrary times.
However, one experimental implementation of reliable signals is available
when threads are enabled. See Thread::Signal
. Also see INSTALL for
how to build a Perl capable of threads.
The internals now reallocate the perl stack only at predictable times. In particular, magic calls never trigger reallocations of the stack, because all reentrancy of the runtime is handled using a "stack of stacks". This should improve reliability of cached stack pointers in the internals and in XSUBs.
Perl used to complain if it encountered literal carriage returns in
scripts. Now they are mostly treated like whitespace within program text.
Inside string literals and here documents, literal carriage returns are
ignored if they occur paired with linefeeds, or get interpreted as whitespace
if they stand alone. This behavior means that literal carriage returns
in files should be avoided. You can get the older, more compatible (but
less generous) behavior by defining the preprocessor symbol
PERL_STRICT_CR
when building perl. Of course, all this has nothing
whatever to do with how escapes like \r
are handled within strings.
Note that this doesn't somehow magically allow you to keep all text files in DOS format. The generous treatment only applies to files that perl itself parses. If your C compiler doesn't allow carriage returns in files, you may still be unable to build modules that need a C compiler.
substr
, pos
and vec
don't leak memory anymore when used in lvalue
context. Many small leaks that impacted applications that embed multiple
interpreters have been fixed.
The build-time option -DMULTIPLICITY
has had many of the details
reworked. Some previously global variables that should have been
per-interpreter now are. With care, this allows interpreters to call
each other. See the PerlInterp
extension on CPAN.
See perlsub/"Temporary Values via local()".
%!
is transparently tied to the Errno module
See perlref.
EXPR foreach EXPR
is supported
See perlsyn.
See perlsub.
$^E
is meaningful on Win32
See perlvar.
foreach (1..1000000)
optimized
foreach (1..1000000)
is now optimized into a counting loop. It does
not try to allocate a 1000000-size list anymore.
Foo::
can be used as implicitly quoted package name
Barewords caused unintuitive behavior when a subroutine with the same
name as a package happened to be defined. Thus, new Foo @args
,
use the result of the call to Foo()
instead of Foo
being treated
as a literal. The recommended way to write barewords in the indirect
object slot is new Foo:: @args
. Note that the method new()
is
called with a first argument of Foo
, not Foo::
when you do that.
exists $Foo::{Bar::}
tests existence of a package
It was impossible to test for the existence of a package without
actually creating it before. Now exists $Foo::{Bar::}
can be
used to test if the Foo::Bar
namespace has been created.
See perllocale.
Perl5 has always had 64-bit support on systems with 64-bit longs. Starting with 5.005, the beginnings of experimental support for systems with 32-bit long and 64-bit 'long long' integers has been added. If you add -DUSE_LONG_LONG to your ccflags in config.sh (or manually define it in perl.h) then perl will be built with 'long long' support. There will be many compiler warnings, and the resultant perl may not work on all systems. There are many other issues related to third-party extensions and libraries. This option exists to allow people to work on those issues.
See perlfunc/prototype.
die()
now accepts a reference value, and $@
gets set to that
value in exception traps. This makes it possible to propagate
exception objects. This is an undocumented experimental feature.
See perlobj/Destructors.
printf
format conversions are handled internally
See perlfunc/printf.
INIT
keyword
INIT
subs are like BEGIN
and END
, but they get run just before
the perl runtime begins execution. e.g., the Perl Compiler makes use of
INIT
blocks to initialize and resolve pointers to XSUBs.
lock
keyword
The lock
keyword is the fundamental synchronization primitive
in threaded perl. When threads are not enabled, it is currently a noop.
To minimize impact on source compatibility this keyword is "weak", i.e., any
user-defined subroutine of the same name overrides it, unless a use Thread
has been seen.
qr//
operator
The qr//
operator, which is syntactically similar to the other quote-like
operators, is used to create precompiled regular expressions. This compiled
form can now be explicitly passed around in variables, and interpolated in
other regular expressions. See perlop.
our
is now a reserved word
Calling a subroutine with the name our
will now provoke a warning when
using the -w
switch.
See Tie::Array.
Several missing hooks have been added. There is also a new base class for TIEARRAY implementations. See Tie::Array.
substr() can now both return and replace in one operation. The optional 4th argument is the replacement string. See perlfunc/substr.
splice() with a negative LENGTH argument now work similar to what the LENGTH did for substr(). Previously a negative LENGTH was treated as 0. See perlfunc/splice.
When you say something like substr($x, 5) = "hi"
, the scalar returned
by substr() is special, in that any modifications to it affect $x.
(This is called a 'magic lvalue' because an 'lvalue' is something on
the left side of an assignment.) Normally, this is exactly what you
would expect to happen, but Perl uses the same magic if you use substr(),
pos(), or vec() in a context where they might be modified, like taking
a reference with \
or as an argument to a sub that modifies @_
.
In previous versions, this 'magic' only went one way, but now changes
to the scalar the magic refers to ($x in the above example) affect the
magic lvalue too. For instance, this code now acts differently:
$x = "hello"; sub printit { $x = "g'bye"; print $_[0], "\n"; } printit(substr($x, 0, 5));
In previous versions, this would print "hello", but it now prints "g'bye".
If $/
is a reference to an integer, or a scalar that holds an integer,
<> will read in records instead of lines. For more info, see
perlvar/$/.
Configure has many incremental improvements. Site-wide policy for building perl can now be made persistent, via Policy.sh. Configure also records the command-line arguments used in config.sh.
BeOS is now supported. See README.beos.
DOS is now supported under the DJGPP tools. See README.dos (installed as perldos on some systems).
MiNT is now supported. See README.mint.
MPE/iX is now supported. See README.mpeix.
MVS (aka OS390, aka Open Edition) is now supported. See README.os390 (installed as perlos390 on some systems).
Stratus VOS is now supported. See README.vos.
Win32 support has been vastly enhanced. Support for Perl Object, a C++ encapsulation of Perl. GCC and EGCS are now supported on Win32. See README.win32, aka perlwin32.
VMS configuration system has been rewritten. See README.vms (installed as README_vms on some systems).
The hints files for most Unix platforms have seen incremental improvements.
You can now run tests for x seconds instead of guessing the right number of tests to run.
Keeps better time.
ext/DB_File/Changes
.
MakeMaker now supports writing empty makefiles, provides a way to specify that site umask() policy should be honored. There is also better support for manipulation of .packlist files, and getting information about installed modules.
Extensions that have both architecture-dependent and architecture-independent files are now always installed completely in the architecture-dependent locations. Previously, the shareable parts were shared both across architectures and across perl versions and were therefore liable to be overwritten with newer versions that might have subtle incompatibilities.
h2ph
and related utilities have been vastly overhauled.
perlcc
, a new experimental front end for the compiler is available.
The crude GNU configure
emulator is now called configure.gnu
to
avoid trampling on Configure
under case-insensitive filesystems.
perldoc
used to be rather slow. The slower features are now optional.
In particular, case-insensitive searches need the -i
switch, and
recursive searches need -r
. You can set these switches in the
PERLDOC
environment variable to get the old behavior.
Config.pm now has a glossary of variables.
Porting/patching.pod has detailed instructions on how to create and submit patches for perl.
perlport specifies guidelines on how to write portably.
perlmodinstall describes how to fetch and install modules from CPAN
sites.
Some more Perl traps are documented now. See perltrap.
perlopentut gives a tutorial on using open().
perlreftut gives a tutorial on references.
perlthrtut gives a tutorial on threads.
(W) A subroutine you have declared has the same name as a Perl keyword, and you have used the name without qualification for calling one or the other. Perl decided to call the builtin because the subroutine is not imported.
To force interpretation as a subroutine call, either put an ampersand
before the subroutine name, or qualify the name with its package.
Alternatively, you can import the subroutine (or pretend that it's
imported with the use subs
pragma).
To silently interpret it as the Perl operator, use the CORE::
prefix
on the operator (e.g. CORE::log($x)
) or by declaring the subroutine
to be an object method (see attrs).
Foo::
, but
the compiler saw no other uses of that namespace before that point.
Perhaps you need to predeclare a package?
(F) You used the syntax of a method call, but the slot filled by the object reference or package name contains an undefined value. Something like this will reproduce the error:
$BADREF = 42; process $BADREF 1,2,3; $BADREF->process(1,2,3);
local $ar->{'key'}
, where $ar is
a reference to a pseudo-hash. That hasn't been implemented yet, but
you can get a similar effect by localizing the corresponding array
element directly -- local $ar->[$ar->[0]{'key'}]
.
$!
errno values.
CORE::word
was given to prototype(), but
there is no builtin with the name word
.
(?{ ... })
zero-width assertion, which is unsafe.
See perlre/(?{ code }), and perlsec.
(?{ ... })
zero-width assertion,
but that construct is only allowed when the use re 'eval'
pragma is
in effect. See perlre/(?{ code }).
(?{ ... })
zero-width assertion at run time, as it would when the pattern contains
interpolated values. Since that is a security risk, it is not allowed.
If you insist, you may still do this by explicitly building the pattern
from an interpolated string at run time and using that in an eval().
See perlre/(?{ code }).
$arr[time]
instead of $arr[$time]
.
(W) You gave a single reference where Perl was expecting a list with an even number of elements (for assignment to a hash). This usually means that you used the anon hash constructor when you meant to use parens. In any case, a hash requires key/value pairs.
%hash = { one => 1, two => 2, }; # WRONG %hash = [ qw/ an anon array / ]; # WRONG %hash = ( one => 1, two => 2, ); # right %hash = qw( one 1 two 2 ); # also fine
*foo = undef
.
This does nothing. It's possible that you really mean undef *foo
.
&
prefix, or using a package qualifier,
e.g. &our()
, or Foo::our()
.
(S) The whole warning message will look something like:
perl: warning: Setting locale failed. perl: warning: Please check that your locale settings: LC_ALL = "En_US", LANG = (unset) are supported and installed on your system. perl: warning: Falling back to the standard locale ("C").
Exactly what were the failed locale settings varies. In the above the settings were that the LC_ALL was "En_US" and the LANG had no value. This error means that Perl detected that you and/or your system administrator have set up the so-called variable system but Perl could not use those settings. This was not dead serious, fortunately: there is a "default locale" called "C" that Perl can and will use, the script will be run. Before you really fix the problem, however, you will get the same error message each time you run Perl. How to really fix the problem can be found in perllocale/"LOCALE PROBLEMS".
(F) The mktemp() routine failed for some reason while trying to process a -e switch. Maybe your /tmp partition is full, or clobbered.
Removed because -e doesn't use temporary files any more.
(F) The write routine failed for some reason while trying to process a -e switch. Maybe your /tmp partition is full, or clobbered.
Removed because -e doesn't use temporary files any more.
(F) The create routine failed for some reason while trying to process a -e switch. Maybe your /tmp partition is full, or clobbered.
Removed because -e doesn't use temporary files any more.
You can use "Configure -Uinstallusrbinperl" which causes installperl to skip installing perl also as /usr/bin/perl. This is useful if you prefer not to modify /usr/bin for some reason or another but harmful because many scripts assume to find Perl in /usr/bin/perl.
If you find what you think is a bug, you might check the headers of recently posted articles in the comp.lang.perl.misc newsgroup. There may also be information at http://www.perl.com/perl/ , the Perl Home Page.
If you believe you have an unreported bug, please run the perlbug
program included with your release. Make sure you trim your bug down
to a tiny but sufficient test case. Your bug report, along with the
output of perl -V
, will be sent off to <perlbug@perl.com> to be
analysed by the Perl porting team.
The Changes file for exhaustive details on what changed.
The INSTALL file for how to build Perl.
The README file for general stuff.
The Artistic and Copying files for copyright information.
Written by Gurusamy Sarathy <gsar@activestate.com>, with many contributions from The Perl Porters.
Send omissions or corrections to <perlbug@perl.com>.